FAIRCHILD

SEMICONDUCTOR TM

74VHC161284 IEEE 1284 Transceiver

General Description

The VHC161284 contains eight bidirectional data buffers and eleven control/status buffers to implement a full IEEE 1284 compliant interface. The device supports the IEEE 1284 standard and is intended to be used in Extended Capabilities Port mode (ECP). The pinout allows for easy connection from the Peripheral (A-side) to the Host (cable side).

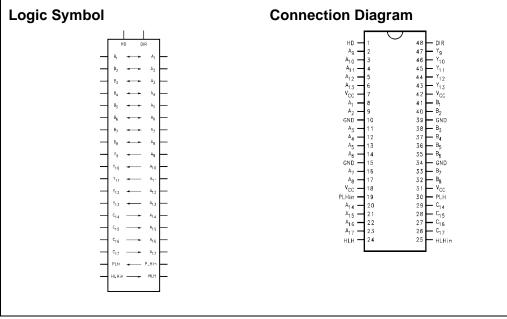
Outputs on the cable side can be configured to be either open drain or high drive (\pm 14 mA). The pull-up and pull-down series termination resistance of these outputs on the cable side is optimized to drive an external cable. In addition, all inputs (except HLH) and outputs on the cable side contain internal pull-up resistors connected to the V_{CC} supply to provide proper termination and pull-ups for open drain mode.

Outputs on the Peripheral side are standard LOW-drive CMOS outputs. The DIR input controls data flow on the A_1-A_8/B_1-B_8 transceiver pins.

Features

Supports IEEE 1284 Level 1 and Level 2 signaling standards for bidirectional parallel communications between personal computers and printing peripherals

February 1998


Revised November 2000

- Replaces the function of two (2) 74ACT1284 devices
- All inputs have hysteresis to provide noise margin
- B and Y output resistance optimized to drive external cable
- B and Y outputs in high impedance mode during power down
- Inputs and outputs on cable side have internal pull-up resistors
- Flow-through pin configuration allows easy interface between the Peripheral and Host

Ordering Code:

Ordering Number	Package Number	Package Description					
74VHC161284MEA	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300 Wide					
74VHC161284MTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide					

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Pin Descriptions Truth Table Pin Names Description Inputs Outputs HD DIR HIGH Drive Enable Input (Active HIGH) HD DIR **Direction Control Input** B₁–B₈ Data to A₁–A₈, and L L A₁-A₈ Inputs or Outputs $A_9 - A_{13}$ Data to $Y_9 - Y_{13}$ (Note 1) B₁–B₈ Inputs or Outputs C14-C17 Data to A14-A17 A₉-A₁₃ Inputs PLH Open Drain Mode Y₉-Y₁₃ Outputs L Н B₁–B₈ Data to A₁–A₈, and Outputs A₉-A₁₃ Data to Y₉-Y₁₃ A₁₄-A₁₇ C₁₄-C₁₇ Inputs C₁₄-C₁₇ Data to A₁₄-A₁₇ PLHIN Peripheral Logic HIGH Input Н L A1-A8 Data to B1-B8 (Note 2) PLH Peripheral Logic HIGH Output $A_9 - A_{13}$ Data to $Y_9 - Y_{13}$ (Note 1) C₁₄-C₁₇ Data to A₁₄-A₁₇ HLHIN Host Logic HIGH Input HLH Host Logic HIGH Output PLH Open Drain Mode A₁-A₈ Data to B₁-B₈ Н Н A₉–A₁₃ Data to Y₉–Y₁₃ C₁₄-C₁₇ Data to A₁₄-A₁₇ Note 1: Y9-Y13 Open Drain Outputs Note 2: B1-B8 Open Drain Outputs Logic Diagram -A8 $A_{9} - A_{13}$ $A_{14} - A_{17}$ PLHin HLH Α1 B₁ - B₈ Y₉-Y₁₃ $C_{14} - C_{17}$ PLH HLHin 1-of-5 1-of-4 1-of-8 į

bsolute Maximum I	Ratings(Note 3)	Recommended Operating				
Supply Voltage		Conditions				
V _{CC}	-0.5V to + 7.0V	Supply Voltage				
nput Voltage (VI) (Note 4)		V _{CC}	4.5V to 5.5V			
A ₁ –A ₁₃ , PLH _{IN} , DIR, HD	-0.5V to V _{CC} + 0.5V	DC Input Voltage (V _I)	0V to V _C			
B ₁ –B ₈ , C ₁₄ –C ₁₇ , HLH _{IN}	-0.5V to + 5.5V (DC)	Open Drain Voltage (V _O)	0V to 5.5			
B ₁ –B ₈ , C ₁₄ –C ₁₇ , HLH _{IN}	-2.0V to + 7.0V *	Operating Temperature (T _A)	-40°C to + 85°C			
	*40 ns Transient					
Dutput Voltage (V _O)						
A ₁ –A ₈ , A ₁₄ –A ₁₇ , HLH	–0.5V to V _{CC} + 0.5V					
B ₁ –B ₈ , Y ₉ –Y ₁₃ , PLH	-0.5V to + 5.5V (DC)					
B ₁ –B ₈ , Y ₉ –Y ₁₃ , PLH	-2.0V to + 7.0V*					
	*40 ns Transient					
DC Output Current (I _O)						
A ₁ –A ₈ , HLH	±25 mA					
B ₁ –B ₈ , Y ₉ –Y ₁₃	±50 mA					
PLH (Output LOW)	84 mA					
PLH (Output HIGH)	–50 mA					
nput Diode Current (IIK) (Note 4)						
DIR, HD, A ₉ –A ₁₃ ,						
PLH, HLH, C ₁₄ –C ₁₇	–20 mA					
Dutput Diode Current (I _{OK})						
A ₁ -A ₈ , A ₁₄ -A ₁₇ , HLH	±50 mA					
B ₁ –B ₈ , Y ₉ –Y ₁₃ , PLH	–50 mA	Note 3: Absolute Maximum continuos rating	is are those values beyond			
DC Continuous V _{CC} or		which damage to the device may occur. Expo adversely affect device reliability. Functional or				
Ground Current	±200 mA	imum rated conditions is not implied.	eration under absolute max-			
Storage Temperature	$-65^{\circ}C$ to $+$ 150°C	Note 4: Either voltage limit or current limit is se	ufficient to protect inputs.			
ESD (HBM) Last Passing						
Voltage	2000V					

DC Electrical Characteristics

Symbol Parame		ter V _{CC} (V)		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ Guaranteed Limits	Units	Conditions	
V _{IK}	Input Clamp Diode Voltage		3.0	-1.2	V	$I_I = -18 \text{ mA}$	
VIH	Minimum HIGH Level Input Voltage	A _n , PLH _{IN} , DIR, HD	4.5 - 5.5	0.7 V _{CC}			
		B _n	4.5 – 5.5	2.0	v		
		C _n	4.5 – 5.5	2.3	v		
		HLH _{IN}	4.5 - 5.5	2.6			
V _{IL}	Maximum LOW Level Input Voltage	A _n , PLH _{IN} , DIR, HD	4.5 – 5.5	0.3 V _{CC}			
		B _n	4.5 – 5.5	0.8	v		
		C _n	4.5 - 5.5	0.8	v		
		HLH _{IN}	4.5 – 5.5	1.6			
ΔVT	Minimum Input Hysteresis	A _n , PLH _{IN} , DIR, HD	4.5 – 5.5	0.4		$V_{T}^{+} - V_{T}^{-}$	
		B _n	4.5 – 5.5	0.4	V	$V_{T}^{+} - V_{T}^{-}$	
		C _n	5.0	0.8		$V_{T}^{+} - V_{T}^{-}$	
		HLH _{IN}	5.0	0.3		$V_{T}^{+} - V_{T}^{-}$	
V _{ОН}	Minimum HIGH Level Output Voltage	A _n , HLH	4.5	4.4		$I_{OH} = -50 \ \mu A$	
			4.5	3.8	v	$I_{OH} = -8 \text{ mA}$	
		B _n , Y _n	4.5	3.73	v	$I_{OH} = -14 \text{ mA}$	
		PLH	4.5	4.45		$I_{OH}=-500~\mu A$	
					-		

4
ø
2
~
ဖ
~
C
Т
5
4
স
\sim

DC Electrical Characteristics (Continued)

Symbol	Parameter		v _{cc}	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	Units	Conditions	
0,				Guaranteed Limits	•	Conditions	
V _{OL}	Maximum LOW Level Output Voltage	A _n , HLH	4.5	0.1		$I_{OL} = 50 \ \mu A$	
			4.5	0.44	v	$I_{OL} = 8 \text{ mA}$	
		B _n , Y _n	4.5	0.77	v	I _{OL} = 14 mA	
		PLH	4.5	0.7		$I_{OL} = 84 \text{ mA}$	
RD	Maximum Output Impedance	B ₁ -B ₈ , Y ₉ -Y ₁₃	5.0	55	Ω	(Note 5)(Note 6)	
	Minimum Output Impedance	B ₁ -B ₈ , Y ₉ -Y ₁₃	5.0	35	Ω	(Note 5)(Note 6)	
RP	Maximum Pull-Up Resistance	B ₁ -B ₈ , Y ₉ -Y ₁₃ , C ₁₄ -C ₁₇	5.0	1650	Ω		
	Minimum Pull-Up Resistance	B ₁ -B ₈ , Y ₉ -Y ₁₃ , C ₁₄ -C ₁₇	5.0	1150	Ω		
IIH	Maximum Input Current in HIGH State	A ₉ –A ₁₃ , PLH _{IN} , HD, DIR, HLH _{IN}	5.5	1.0	μA	$V_{I} = 5.5V$	
		C ₁₄ -C ₁₇	5.5	100	μΛ	$V_I = 5.5V$	
IIL	Maximum Input Current in LOW State	A ₉ –A ₁₃ , PLH _{IN} , HD, DIR, HLH _{IN}	5.5	-1.0	μΑ	$V_{I} = 0.0V$	
		C ₁₄ -C ₁₇	5.5	-5.0	mA	$V_I = 0.0V$	
I _{OZH}	Maximum Output Disable Current	A ₁ —A ₈	5.5	20	μA	$V_0 = 5.5V$	
	(HIGH)	B ₁ –B ₈	5.5	100	μΑ	$V_O = 5.5V$	
I _{OZL}	Maximum Output Disable Current	A ₁ —A ₈	5.5	-20	μA	$V_{O} = 0.0V$	
	(LOW)	B ₁ –B ₈	5.5	-5.0	mA	ĺ	
I _{OFF}	Power Down Output Leakage	B ₁ –B ₈ , Y ₉ –Y ₁₃ , PLH	0.0	100	μΑ	$V_0 = 5.5V$	
I _{OFF}	Power Down Input Leakage	C ₁₄ -C ₁₇ , HLH _{IN}	0.0	100	μA	$V_I = 5.5V$	
$I_{OFF} - I_{CC}$	Power Down Leakage to V _{CC}		0.0	250	μΑ	(Note 7)	
I _{CC}	Maximum Supply Current	1	5.5	70	mA	$V_I = V_{CC}$ or GNI	

Note 5: Output impedance is measured with the output active LOW and active HIGH (HD = HIGH).

Note 6: This parameter is guaranteed but not tested, characterized only.

Note 7: Power-down leakage to V_{CC} is tested by simultaneously forcing all pins on the cable-side (B₁-B₈, Y₉-Y₁₃, PLH, C₁₄-C₁₇ and HLH_{IN} to 5.5V and measuring the resulting I_{CC}.

		T _A = -40°	T _A = −40°C to +85°C V _{CC} = 4.5V − 5.5V			
Symbol	Parameter	V _{CC} = 4.				
		Min	Max		Number	
PHL	A ₁ -A ₈ to B ₁ -B ₈	2.0	30.0	ns	Figure 1	
PLH	A ₁ -A ₈ to B ₁ -B ₈	2.0	30.0	ns	Figure 2	
PHL	B ₁ -B ₈ to A ₁ -A ₈	2.0	30.0	ns	Figure 3	
PLH	B ₁ -B ₈ to A ₁ -A ₈	2.0	30.0	ns	Figure 3	
PHL	A ₉ -A ₁₃ to Y ₉ -Y ₁₃	2.0	30.0	ns	Figure 1	
PLH	A ₉ -A ₁₃ to Y ₉ -Y ₁₃	2.0	30.0	ns	Figure 2	
PHL	C ₁₄ -C ₁₇ to A ₁₄ -A ₁₇	2.0	30.0	ns	Figure 3	
PLH	C ₁₄ -C ₁₇ to A ₁₄ -A ₁₇	2.0	30.0	ns	Figure 3	
SKEW	LH-LH or HL-HL		6.0	ns	(Note 9)	
PHL	PLH _{IN} to PLH	2.0	30.0	ns	Figure 1	
PLH	PLH _{IN} to PLH	2.0	30.0	ns	Figure 2	
PHL	HLH _{IN} to HLH	2.0	30.0	ns	Figure 3	
PLH	HLH _{IN} to HLH	2.0	30.0	ns	Figure 3	
PHZ	Output Disable Time	2.0	18.0	20	ns Fiqu	Figure 7
PLZ	DIR to A ₁ -A ₈	2.0	18.0	115	r igule /	
PZH	Output Enable Time	2.0	25.0	ns Fic	Figure 8	
PZL	DIR to A ₁ -A ₈	2.0	25.0	115	r igule o	
PHZ	Output Disable Time	2.0	25.0	ns	Figure 9	
PLZ	DIR to B ₁ -B ₈	2.0	25.0	115	r igule 9	
pEN	Output Enable Time	2.0	2.0 28.0		Figure 2	
	HD to B ₁ –B ₈ , Y ₉ –Y ₁₃	2.0	20.0	ns	r igute z	
pDis	Output Disable Time	2.0	28.0	ns	Figure 2	
	HD to B ₁ –B ₈ , Y ₉ –Y ₁₃	2.0	20.0	115	r igute z	
pEn ^{—t} pDis	Output Enable-Output Disable		20.0	ns		
SLEW	Output Slew Rate					
PLH	B ₁ -B ₈ , Y ₉ -Y ₁₃	0.05	0.40	V/ns	Figure 5	
PHL		0.05	0.40	V/115	Figure 4	
r, t _f	t _{RISE} and t _{FALL}		120	ns	Figure 6	
	B ₁ -B ₈ , Y ₉ -Y ₁₃ (Note 8)		120	115	(Note 10)	

Note 8: Open Drain

Note 9: t_{SKEW} is measured for common edge output transitions and compares the measured propagation delay for a given path type.

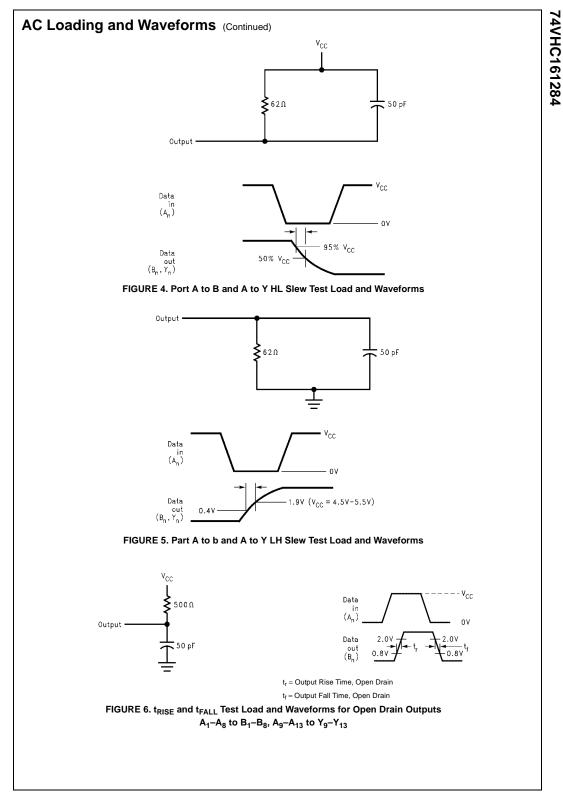
(i) $\mathsf{A}_1\text{-}\mathsf{A}_8$ to $\mathsf{B}_1\text{-}\mathsf{B}_8,\,\mathsf{A}_9\text{-}\mathsf{Y}_{13}$ to $\mathsf{Y}_9\text{-}\mathsf{Y}_{13}$

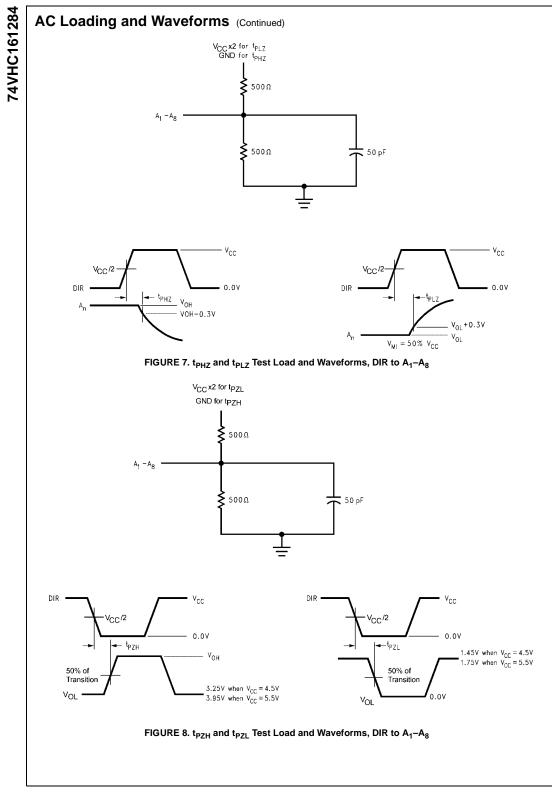
(ii) B₁–B₈ to A₁–A₈

(iii) C_{14} - C_{17} to A_{14} - A_{17}

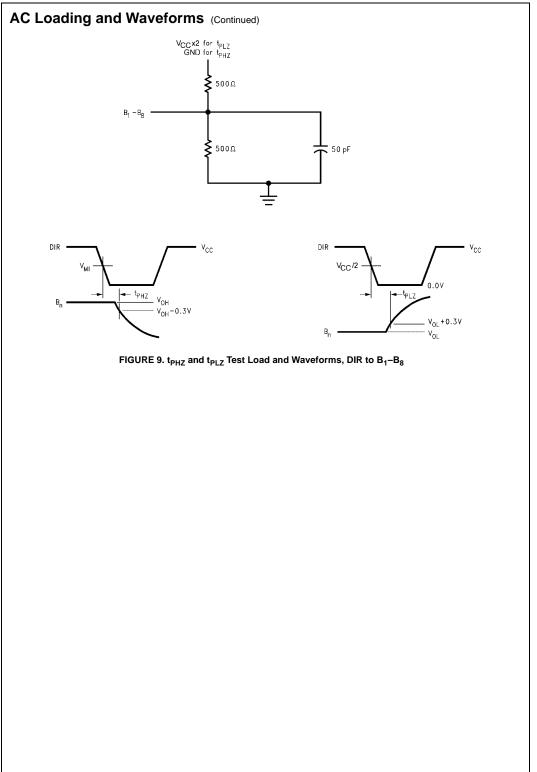
Note 10: This parameter is guaranteed but not tested, characterized only.

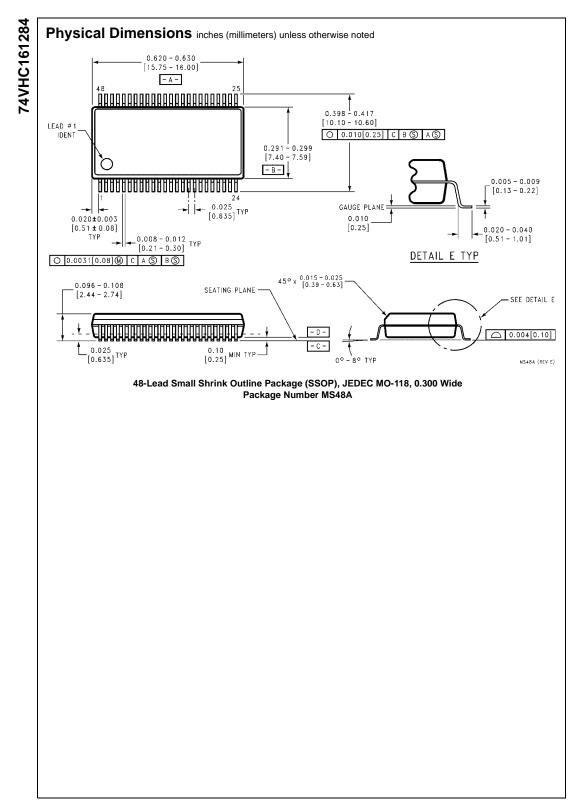
. .

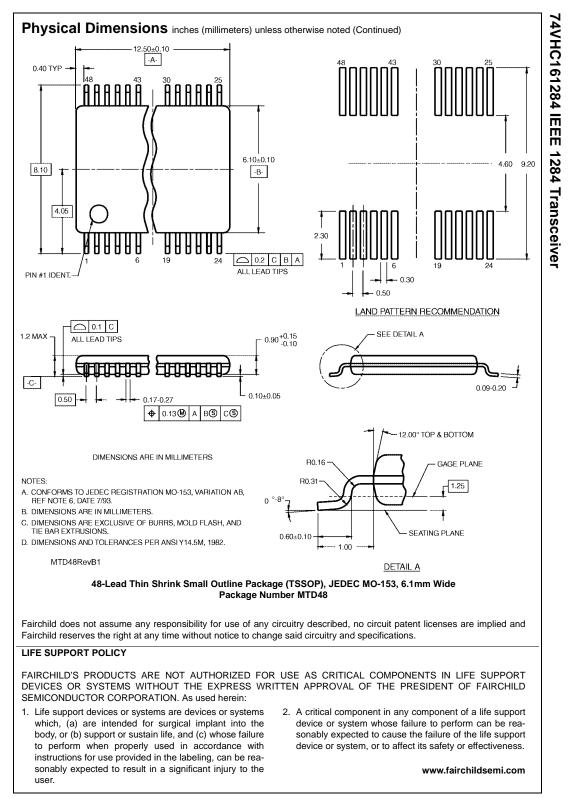

Capacitance (Note 11)


Symbol	Parameter	Тур	Units	Conditions
CIN	Input Capacitance	5	pF	$V_{CC} = 0.0V$ (HD, DIR, A ₉ —A ₁₃ , C ₁₄ —C ₁₇ , PLH _{IN} and HLH _{IN})
C _{I/O}	I/O Pin Capacitance	12	pF	V _{CC} = 3.3V

Note 11: Capacitance is measured at frequency = 1 MHz.


AC Loading and Waveforms Pulse Generator for all pulses: Rate \leq 1.0 MHz; Z_0 \leq 500; t_f \leq 2.5 ns, t_r \leq 2.5 ns. V_{CC} Data $v_{\rm CC}$ in ′cc /2 (A_n, PLHin) ٥٧ t_{PHL} → ₹500Ω ′он 50 pF Data out -1.4V Output юн $(B_n, Y_n, and PLH)$ t_{PHL} VOL V_{MI} = 50% V_{CC} -V_{CC} Output Data ^tPLH V_{CC}/2 **\$**500Ω in 50 pF 0٧ ^tPLH ·v_{он} Data out ΟL FIGURE 1. Part A to B and A to Y Propagation Delay Load and Waveforms --V_{CC} Data $v_{\rm CC}$ Data 'cc/2 in ′cc ^{/2} (HD)in 0٧ (HD) 0V - t_{penable} ^tpdisable Data out (B_n,Y_n) V_{CC} /2 Data out (B_n,Y_n) V_{ОН} -0.3V V_{OH} FIGURE 2. Port A to B and a to Y Output Waveforms - V_{CC} Output Data in м € 500Ω ٥v 50 pF t_{PHL} −V_{OUT} t_{PLH} Data out V_{CC} /2 /_{CC}/2 FIGURE 3. Port B to A, C to A and HLHin to HLH Propagation Delay Waveforms





www.fairchildsemi.com

8

